How to Assemble a Kerosene Lamp – Antique Lamp Supply
Making and Repairing Kerosene Lamps
Information on blinking kerosene lamps
, which produced the light for theSumburgh Head lighthouseuntil 1976. The lamp (made around 1914) burned vaporizedkerosene(paraffin); the vaporizer was heated by adenatured alcohol(methylated spirit) burner to light. When lit, some of the vaporised fuel was diverted to aBunsen burnerto keep the vaporizer warm and the fuel in vapor form. The fuel was forced up to the lamp by air; the keepers had to pump the air container up every hour or so. This in turn pressurized the paraffin container to force the fuel to the lamp. The white sock is in fact an unburnt mantle, on which the vapor burned.
Any liquid with a lowflash pointpresents a high risk of fire or explosion if used in a kerosene wick lamp. Such liquids are dangerous and should not be used in a kerosene lamp or lantern. Examples include:
The cold-blast design is similar to the hot-blast, except that cold fresh air is drawn in from around the top of the globe and is then fed though the metal side tubes to the flame, making it burn brighter. This design produces a brighter light than the hot-blast design, because the fresh air that is fed to the flame has plenty of oxygen to support the combustion process.
Information on Dietz Kerosene Lamps and Lanterns
Mantle lamps are nearly always bright enough to benefit from a lampshade, and a few mantle lamps may be enough to heat a small building in cold weather. Mantle lamps, because of the highertemperatureat which they operate, do not produce much odor, except when first lit or extinguished. Like flat- and round-wick lamps, they can be adjusted for brightness; however, caution must be used, because if set too high, the lamp chimney and the mantle can become covered with black areas of soot. A lamp set too high will burn off its soot harmlessly if quickly turned down, but if not caught soon enough, the soot itself can ignite, and a runaway lamp condition can result.
Information concerning kerosene burners (German) by Gerhard Bruder
The earliest portable kerosene glass globe lanterns, of the 1850s and 1860s, were of the dead-flame type, meaning that it had an open wick, but the airflow to the flame was strictly controlled in an upward motion by a combination of vents at the bottom of the burner and an open topped chimney. This had the effect of removing side-to-side drafts and thus significantly reducing or even eliminating the flickering that can occur with an exposed flame.
Articles with unsourced statements from December 2015
Wikimedia Commons has media related to
, Springer, 2012ISBN2-8178-0267-5page 308.
This page was last edited on 22 April 2018, at 14:48.
All articles with unsourced statements
Akerosene lamp(also known as aparaffin lampin some countries) is a type oflightingdevice that useskerosene(paraffin) as afuel. Invented by thePolishpharmacistIgnacy Łukasiewiczin 1853, kerosene lamps have awickor mantle as light source, protected by a glass chimney or globe; lamps may be used on a table, or hand-heldlanternsmay be used for portable lighting. Likeoil lamps, they are useful for lighting without electricity, such as in regions withoutrural electrification, inelectrifiedareas duringpower outages, atcampsites, and onboats. There are three types of kerosene lamp: flat-wick, central-draught (tubular round wick), and mantle lamp. Kerosene lanterns meant for portable use have a flat wick and are made in dead-flame, hot-blast, and cold-blast variants.
One popular model of mantle lamp uses only a wick and is unpressurized.
Please help toimprovethis article byintroducingmore precise citations.
A kerosene lantern, also known as a barn lantern or hurricane lantern, is a flat-wick lamp made for portable and outdoor use. They are made of soldered or crimped-together sheet-metal stampings, with tin-plated sheet steel being the most common material, followed by brass and copper. There are three types: dead-flame, hot-blast, and cold-blast. Both hot-blast and cold-blast designs are called tubular lanterns and are safer than dead-flame lamps, as tipping over a tubular lantern cuts off the oxygen flow to the burner and will extinguish the flame within seconds.[5]
Round-wick center-draft lamps must only burn either Klean-Heat or low-odor mineral spirits.
Text is available under the; additional terms may apply. By using this site, you agree to theTerms of UseandPrivacy Policy. Wikipedia® is a registered trademark of theWikimedia Foundation, Inc., a non-profit organization.
, JanuaryFebruary 1995, pp.2027.
Later lanterns, such as the hot-blast and cold-blast lanterns, took this airflow control even further by partially enclosing the wick in a deflector or burner cone and channeling the airflow through that restricted area, creating a brighter and even more stable flame.
Lumens to watts (W) conversion calculator.
A central-draught lamp, orArgand lamp, works in the same manner as the flat-wick lamp. The burner is equipped with a tall glass chimney, of around 12 inches (300mm) tall or taller, to provide the powerful draft this lamp requires to burn properly. The burner uses a wick, usually made ofcotton, that is made of a wide, flat wick rolled into a tube, the seam of which is then stitched together to form the complete wick. The tubular wick is then mounted into a carrier, which is some form of a toothed rack that engages into the gears of the wick-raising mechanism of the burner and allows the wick to be raised and lowered. The wick rides in between the inner and outer wick tubes; the inner wick tube (central draft tube) provides the central draft or draft that supplies air to the flame spreader. When the lamp is lit, the central draft tube supplies air to the flame spreader that spreads out the flame into a ring offireand allows the lamp to burn cleanly.
Articles with unsourced statements from March 2012
Generic lamp oil is available clear or in a choice of several colors and in scented and unscented forms. Although more expensive, lamp oil is highly refined and burns more cleanly and with less odor than kerosene. Lamp oil must not be liquid paraffin. Water-clear K-1 kerosene is the next grade of preferred fuel for kerosene wick lamps. In some locationsred keroseneis sold, which is dyed red and is slightly less expensive than K-1 kerosene, as nomotor-fuel taxesare collected on it. Red kerosene is not recommended because the dye will gradually clog the lantern wick, causing odor and reduced performance. Klean-Heat brand is another highly refined, cleaner-burning, nicer-smelling[citation needed]kerosene substitute sold at manyhardware storesduring winter. Citronella-scented lamp oil containinglemongrass oilis sold for itsinsect repellentproperties. Citronella fuels should only be used outdoors. Liquid paraffin-based lamp oil should only be used in round-wick lamps with a wick diameter of less than5⁄8inch (16mm). Used in larger wicks, this fuel causes the wicks to clog.[citation needed]
From Wikipedia, the free encyclopedia
Jean-Claude Bolay, Alexandre Schmid, Gabriela Tejada
The hot-blast design, also known as a tubular lantern due to the metal tubes used in its construction, was invented by John Irwin and patented on January 12, 1868. The hot-blast design collected hot air from above the globe and fed it through metal side tubes to the burner, to make the flame burn brighter.
, Naval Institute Press, 2004ISBN1-59114-626-7, page 34.
Flat-wick kerosene lamps should only be operated with kerosene, lamp oil or Klean-Heat, but alternative fuels can be used in an emergency. Such fuels may produce additional smoke and odor and may not be usable indoors.Tractor vaporizing oilis made from kerosene with some additive to make amotor fuelfor tractors. No. 1diesel fuel(also called winter diesel) is about the same askerosenebut with the additives to make it amotor fuelJet Ajet-engine fuel is essentially kerosene with a few additives.RP-1(Rocket Propellant-1) is a highly refined form of kerosene outwardly similar to jet fuel, used as rocket fuel.
^ Energy Information Administration.U.S. Prime Supplier Sales Volumes of Petroleum Products.
Lighthouses & Keepers: The U.S. Lighthouse Service and Its Legacy
A variation on the central-draught lamp is the mantle lamp. The mantle is a roughly pear-shaped mesh made of fabric placed over the burner. The mantle typically containsthoriumor other; on first use the cloth burns away, and the rare-earth salts are converted to oxides, leaving a very fragile structure, whichincandesces(glows brightly) upon exposure to the heat of the burner flame. Mantle lamps are considerably brighter than flat- or round-wick lamps, produce a whiter light and generate moreheat. Mantle lamps typically use fuel faster than a flat-wick lamp, but slower than a center-draught round-wick, as they depend on a small flame heating a mantle, rather than having all the light coming from the flame itself.
This type of lamp was very widely used by railways, both on the front and rear of trains and for hand signals, due to its reliability. At a time when there were few competing light sources at night outside major towns, the limited brightness of these lamps was adequate and could be seen at sufficient distance to serve as a warning or signal.
Large fixed pressurized kerosene mantle lamps were used inlighthousebeacons for navigation of ships, brighter and with lower fuel consumption than oil lamps used before.[4]
Zayn Bilkadi (University of California, Berkeley), The Oil Weapons,
Pressurized mantle lamps contain a gas generator and require preheating the generator before lighting. An air pump is used to deliver fuel under pressure to the gas generator.
Articles lacking in-text citations from September 2011
Incandescent Petroleum Vapour Installation
Articles with unsourced statements from November 2017
The first description of a simple lamp using crude mineral oil was provided byPersianalchemistal-Razi(Rhazes) in 9th centuryBaghdad, who referred to it as the naffatah in hisKitab al-Asrar(Book of Secrets).[1]In 1846Abraham Pineo Gesnerinvented a substitute forwhale oilfor lighting, distilled from coal. Later made from petroleum, kerosene became a popular lighting fuel. Modern and most popular versions of the kerosene lamp were later constructed by Polish inventor and pharmacist Ignacy Łukasiewicz.
A flat-wick lamp is a simple type ofkerosenelamp, which burns kerosene drawn up through a wick bycapillary action. If this type of lamp is broken, it can easily start a fire. A flat-wick lamp has a fuel tank (fount), with the lamp burner attached. Attached to the fuel tank, four prongs hold the glass chimney, which acts to prevent the flame from being blown out and enhances a thermally induceddraft. The glass chimney needs a throat, or slight constriction, to create the proper draft for completecombustionof the fuel; the draft carries more air (oxygen) past the flame, helping to produce a smokeless light, which is brighter than an open flame would produce.
Tubular Oil Lanterns Frequently Asked Questions. W. T. Kirkman Lanterns, Inc. Archived fromthe originalon 2013-10-29.
Technologies and Innovations for Development: Scientific Cooperation for a Sustainable Future
Contamination of lamp fuel with even a small amount of gasoline results in a lower flash point and higher vapor pressure for the fuel, with potentially dangerous consequences. Vapors from spilled fuel may ignite; vapor trapped above liquid fuel may lead to excess pressure and fires. Kerosene lamps are still extensively used in areas without electrical lighting; the cost and dangers of combustion lighting are a continuing concern in many countries.[6]
Flat-wick lamps have the lowest light output, center-draft round-wick lamps have 34 times the output of flat-wick lamps, and pressurized lamps have higher output yet; the range is from 8 to 100lumens. A kerosene lamp producing 37 lumens for 4 hours per day consumes about 3 litres of kerosene per month.[7]
This article includes alist of references, but
All articles lacking in-text citations
(Learn how and when to remove this template message)
Pressurized kerosene lamps have agas generatorandgas mantle; these are known asPetromaxTilley lamps, orColemanlamps, among other manufacturers. They produce more light per unit of fuel than wick-type lamps, but are more complex and expensive in construction and more complex to operate. A hand-pump pressurizes air, which forces liquid fuel from a reservoir into a gas generator. Vapor from the gas generator burns, heating a mantle to incandescence and also providing heat to the gas generator.
mineral spirits, paint thinner,white spirit(Stoddard solvent),
Kerosene Lamps and Cookstoves the Hazards of Gasoline Contamination
The lamp burner has a flat wick, usually made ofcotton. The lower part of the wick dips into the fount and absorbs the kerosene; the top part of the wick extends out of the wick tube of the lamp burner, which includes a wick-adjustment mechanism. Adjusting how much of the wick extends above the wick tube controls the flame. The wick tube surrounds the wick and ensures that the correct amount of air reaches the lamp burner. Adjustment is usually done by means of a small knob operating a cric, which is a toothed metalsprocketbearing against the wick. If the wick is too high, and extends beyond the burner cone at the top of the wick tube, the lamp will producesmokeandsoot(unburned carbon). When the lamp is lit, the kerosene that the wick has absorbed burns and produces a clear, bright, yellowflame. As the kerosene burns,capillary actionin the wick draws more kerosene up from the fuel tank. All kerosene flat-wick lamps use the dead-flame burner design, where the flame is fed cold air from below, and hot air exits above.
Swiss flat-wick kerosene lamp. The knob protruding to the right adjusts the wick, and hence the flame size.
Kerosene lamps are widely used for lighting in rural areas of Africa and Asia, where electricity is not distributed or is too costly. Kerosene lamps consume an estimated 77 billion litres of fuel per year, equivalent to 1.3 million barrels of oil per day,[2]comparable to annual U.S. jet-fuel consumption of 76 billion litres per year.[3]
other hydrocarbon solvents such asturpentinebenzenexylenetolueneacetonecamphene, lacquer thinner,
Distributional Impacts of Energy Policies in India: Implications for Equity